Kamis, 14 Februari 2013

vidio mobil kecelakaan dalam perjalanan.

vidio ini nyata .......... !!!!

 
Read More ->>

cara ngedrift untuk para pemula

1. HANDBRAKE DRIFT difficulty level : LOW
Teknik pake rem tangan ga' susah, kaya' di film FFTD "just use your hand brake" khe2. Biasanya orang yang pake' teknik ini, pedal handbrake mobil standart diganti, biar kalo ditarik ga' ngunci. Caranya injek kopling, belokin stir, tarik handbrake saat deselerasi bwat ngilangin traksi roda blakang dari jalan, kalo bokong mobil dah ngerasa nggeser lepas handbrake, lepas kopling+injek en atur gas but jangan lupa bwat counter steer biar seimbang en ga' spin. Kekurangan dari handbrake drift biasanya speed langsung drop.

2. POWER OVER DRIFT difficulty level : MEDIUM LOW
Intinya mobil yang dipake harus punya torsi yang gede biar traksi roda blakang bisa pecah. Saat belok, tinggal injek pedal gas dalem2. kalo mang mobilnya kuat, pasti ngeslide. Nah klo udah ngeslide tinggal atur gas ama counter steer aj.

3. KANSEI DRIFT difficulty level : MEDIUM LOW
Kata lainnya accel off drift, saat lagi kenceng2nya mobil belok tiba2 mengangkat kaki dari pedal gas. Hal itu bikin distribusi bobot mobil pindah kedepan dan otomatis bikin bokong mobil nggeser, saat itu kembali ijek+atur gas en counter steer biar seimbang en ga' spin. sebenernya ini teknik dasar banget biar drifter bisa ngerasa'in gimana cara ngendali'in mobil, gimana cara memindahkan beban en biasanya dilakuin di tikungan yang ga' begitu tajem.

4. BRAKING DRIFT difficulty level : MEDIUM
Kalo udah biasa kansai, drifter biasanya beralih ke braking drift. Saat belok selain dekelerasi, dengan nginjek pedal ram dalem2 distribusi bobot pindah kedepan otomatis traksi ban blakang ilang, tinggal atur gas ama couter steer. Biasanya braking drift dipake' kalo belokan aga' tajem.

5. FEINT DRIFT difficulty level : MEDIUM
Nah, ini njelasinnya aga' repot, feint biasanya teknik yang dipake para perelly. Feint drift kaya' efek pendulum, jadi bawa mobil kearah berlawanan dari tikungan, trus tiba2 balik ke arah tikungan. Kalo dibayangin, kaya' mbuang bokong mobil biar ngeslide. Sisanya tinggal atur gas ama counter steer.

6. CLUTCH KICK difficulty level : MEDIUM HIGH
Teknik ini digunakan untuk memicu drift tanpa mengurangi kecepatan. Caranya saat belok injak kopling sambil full throttle en revving mesin, baru lepas kopling. Proses harus dilakukan sekedip mata agar mesin ga' over-rev. Yup! teknik ini berpotensi untuk ngerusak sistem drive train mobil, terutama kopling. teknik ini dipakai harus dengan penggantian kopling kompetisi.

7. SHIFT LOCK DRIFT difficulty level : MEDIUM HIGH
Hampir sama ama cluth kick, hanya bedanya drifter memindah gigi lebih rendah untuk menurunkan rpm lalu lepas kopling untuk melambatkan roda blakang agar oversteer. Sama ama cluth kick, teknik ini berpotensi untuk ngerusak sistem drive train mobil. Untuk shift lock yang rawan jebol gearboxnya.

8. MANJI DRIFT difficulty level : HIGH
Wuh! ini dia teknik ekstreem drift. Manji sendiri diambil dari simbol religius yang dikenal sebagai "reverse swastika", karena mobil bagaikan pena diatas aspal. Dijalan lurus bagian blakang mobil dibuat bergoyang2 ke kanan dan kekiri, oversteer perlahan dari sisi ke sisi yang lain dengan perpaduan pengaturan gas+counter steering. teknik ini meninggalkan jejak zigzag di aspal sebelum akhirnya masuk ke tikungan.

Buat drifter profesional, teknik2 yang ada mereka kombinasi'in. Kaya' MANJI+FEINT+CLUTH KICK, ato HANDBRAKE+SHIFT LOCK, dan laen2 sesuai kebutuhan speed en tikungan yang mao diambil.

Read More ->>

Sistem pendinginan

Sistem pendinginan

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Sistem pendinginan dalam mesin kendaraan adalah suatu sistem yang berfungsi untuk menjaga supaya temperatur mesin dalam kondisi yang ideal. Mesin pembakaran dalam (maupun luar) melakukan proses pembakaran untuk menghasilkan energi dan dengan mekanisme mesin diubah menjadi tenaga gerak. Mesin bukan instrumen dengan efisiensi sempurna, panas hasil pembakaran tidak semuanya terkonversi menjadi energi, sebagian terbuang melalui saluran pembuangan dan sebagian terserap oleh material disekitar ruang bakar. Mesin dengan efisiensi tinggi memiliki kemampuan untuk konversi panas hasil pembakaran menjadi energi yang diubah menjadi gerakan mekanis, dengan hanya sebagian kecil panas yang terbuang. Mesin selalu dikembangkan untuk mencapai efisiensi tertinggi, tetapi juga mempertimbangkan faktor ekonomis, daya tahan, keselamatan serta ramah lingkungan.
Proses pembakaran yang berlangsung terus menerus dalam mesin mengakibatkan mesin dalam kondisi temperatur yang sangat tinggi. Temperatur sangat tinggi akan mengakibatkan desain mesin menjadi tidak ekonomis, sebagian besar mesin juga berada di lingkungan yang tidak terlalu jauh dengan manusia sehingga menurunkan faktor keamanan. Temperatur yang sangat rendah juga tidak terlalu menguntungkan dalam proses kerja mesin. Sistem pendinginan digunakan agar temperatur mesin terjaga pada batas temperatur kerja yang ideal.
Prinsip pendinginan adalah melepaskan panas mesin ke udara, tipe langsung dilepaskan ke udara disebut pendinginan udara (air cooling), tipe menggunakan fluida sebagai perantara disebut pendinginan air.

Daftar isi

Pendinginan udara

Silinder mesin dengan sirip pendingin
Dalam sistem ini, panas mesin langsung dilepaskan ke udara. Mesin dengan sistem pendinginan udara mempunyai desain pada silinder mesin terdapat sirip pendingin. Sirip pendingin ini untuk memperluas bidang singgung antara mesin dengan udara sehingga pelepasan panas bisa berlangsung lebih cepat. Sebagian dilengkapi dengan kipas (kipas eletkris atau mekanis) untuk mengalirkan udara melalui sirip pendingin, sebagian yang lain tanpa menggunakan kipas.
  Kelebihan
Tipe ini memiliki kelebihan :
  • Desain mesin lebih ringkas.
  • Berat mesin secara keseluruhan lebih ringan dibandingkan tipe pendinginan air.
  • Mudah perawatannya.
Tipe ini memiliki kekurangan, harus ada penyesuaian untuk digunakan di daerah dingin atau panas terutama mesin berkapasitas besar.
Tipe ini banyak diaplikasikan pada mesin pesawat, sebagian besar sepeda motor, mobil tipe lama dan sebagian kecil mobil tipe terbaru. Hampir semua mesin dengan kapasitas kecil menggunakan tipe ini, seperti mesin pemotong rumput, mesin genset dibawah 10 Kva, mesin pemotong kayu (chain saw) dan sebagainya.

Read More ->>

Sistem pembuangan

Sistem pembuangan

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Pipa pembuangan mobil
Sistem pembuangan adalah saluran untuk membuang sisa hasil pembakaran pada mesin pembakaran dalam. Sistem pembuangan terdiri dari beberapa komponen, minimal terdiri dari satu pipa pembuangan yang di Indonesia dikenal juga sebagai knalpot yang diadopsi dari bahasa Belanda atau saringan suara.

Daftar isi

Desain

Desain saluran pembuangan dirancang untuk menyalurkan gas hasil pembakaran mesin ketempat yang aman bagi pengguna mesin. Gas hasil pembakaran umumnya panas, untuk itu saluran pembuangan harus tahan panas dan cepat melepaskan panas. Saluran pembuangan tidak boleh melewati atau berdekatan dengan material yang mudah terbakar atau mudah rusak karena panas. Meskipun tampak sederhana, desain sistem pembuangan cukup berpengaruh terhadap performa mesin.[1]

Komponen utama

Skema sistem pembuangan : 8 Ruang bakar. 9 Katup buang. 10 Saluran buang. 11 Exhaust manifold. 12 Catalytic converter. 13 Muffler.
Umumnya komponen dalam sistem pembuangan terdiri dari :
  • Kepala silinder, dimana pipa pembuangan dimulai, kecuali pada mesin dua langkah dimana saluran pembuangan ditempatkan dibagian bawah dinding silender.
  • Exhaust manifold atau exhaust header, dimana pipa dari beberapa ruang bakar/silinder bergabung.
  • Catalytic converter untuk menurunkan kadar gas beracun, CO, HC dan NOx
  • Knalpot, pipa untuk mengalirkan gas hasil pembakaran.
  • Peredam suara atau disebut juga muffler, yang berfungsi untuk meredam suara. Pada sepeda motor, peredam bunyi ada di dalam knalpot sedangkan pada mobil umumnya terlihat dengan jelas berupa tabung sebelum ujung pipa pembuangan.
Selain itu ada opsional komponen berupa Turbocharger, yang menggunakan tenaga/energi yang masih tersisa untuk memutar turbin agar udara yang akan dimasukkan ke ruang bakar bertekanan sehingga mesin akan menghasilkan tenaga yang lebih besar.

Read More ->>

Karburator

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Bendix-Technico (Stromberg) 1-barrel downdraft carburetor model BXUV-3
Karburator adalah sebuah alat yang mencampur udara dan bahan bakar untuk sebuah mesin pembakaran dalam. Karburator masih digunakan dalam mesin kecil dan dalam mobil tua atau khusus seperti yang dirancang untuk balap mobil stok. Kebanyakan mobil yang diproduksi pada awal 1980-an telah menggunakan injeksi bahan bakar elektronik terkomputerisasi. Mayoritas sepeda motor masih menggunakan karburator dikarenakan lebih ringan dan murah, namun pada 2005 sudah banyak model baru diperkenalkan dengan injeksi bahan bakar.

Daftar isi

Sejarah dan Pengembangan

Karburator pertama kali ditemukan oleh Karl Benz pada tahun 1885 dan dipatenkan pada tahun 1886. Pada tahun 1893 insinyur kebangsaan Hungaria bernama János Csonka dan Donát Bánki juga mendesain alat yang serupa. Adalah Frederick William Lanchester dari Birmingham, Inggris yang pertama kali bereksperimen menggunakan karburator pada mobil. Pada tahun 1896 Frederick dan saudaranya membangun mobil pertama yang menggunakan bahan bakar bensin di Inggris, bersilinder tunggal bertenaga 5 hp (4 kW), dan merupakan mesin pembakaran dalam (internal combution). Tidak puas dengan hasil akhir yang didapat, terutama karena kecilnya tenaga yang dihasilkan, mereka membangun ulang mesin tersebut, kali ini mereka menggunakan dua silinder horisontal dan juga mendisain ulang karburator mereka. Kali ini mobil mereka mampu menyelesaikan tur sepanjang 1.000 mil (1600 km) pada tahun 1900. Hal ini merupakan langkah maju penggunaan karburator dalam bidang otomotif
Karburator umum digunakan untuk mobil berhahan bakar bensin sampai akhir 1980-an. Setelah banyak kontrol elektronik digunakan pada mobil, penggunaan karburator mulai digantikan oleh sistem injeksi bahan bakar karena lebih mudah terintegrasi dengan sistem yang lain untuk mencapai efisiensi bahan bakar. ĿĿ

Desain

Karburator dapat dikelompokan menurut arah aliran udara, barel dan tipe venturi. Tiap-tiap karburator mengkombinasikan ketiganya dalam desainnya.

Arah aliran udara

  1. Aliran turun (downdraft), udara masuk dari bagian atas karburator lalu keluar melalui bagian bawah karburator.
  2. Aliran datar (sidedraft), udara masuk dari sisi samping dan mengalir dengan arah mendatar lalu keluar lewat sisi sebelahnya.
  3. Aliran naik (updraft), kebalikan dari aliran turun, udara masuk dari bawah lalu keluar melalui bagian atas.

Barel

A high performance 4-barrel carburetor.
Barel adalah saluran udara yang didalamnya terdapat venturi.
  1. Single barel, hanya memiliki satu barel. Umumnya digunakan pada sepeda motor atau mobil dengan kapasitas mesin kecil.
  2. Multi barel, memimiliki lebih dari satu barel (umumnya dua atau empat barel), untuk memenuhi kebutuhan akan aliran udara yang lebih besar terutama untuk mesin dengan kapasitas mesin yang besar.

Venturi

  1. Venturi Tetap, pada tipe ini ukuran venturi selalu tetap. Pedal gas mengatur katup udara yang menentukan besarnya aliran udara yang melewati venturi sehigga menentukan besarnya tekanan untuk menarik bahan bakar.
  2. Venturi bergerak, pada tipe ini pedal gas mengatur besarnya venturi dengan menggunakan piston yang dapat naik-turun sehingga membentuk celah venturi yang dapat berubah-ubah. Naik-turunnya piston venturi ini disertai dengan naik-turunnya needle jet yang mengatur besarnya bahan bakar yang dapat tertarik serta dengan aliran udara. Tipe ini disebut juga "tekanan tetap" karena tekanan udara sebelum memasuki venturi selalu sama.

Prinsip Kerja

Pada dasarnya karburator bekerja menggunakan Prinsip Bernoulli: semakin cepat udara bergerak maka semakin kecil tekanan statis-nya namun makin tinggi tekanan dinamis-nya. Pedal gas pada mobil sebenarnya tidak secara langsung mengendalikan besarnya aliran bahan bakar yang masuk kedalam ruang bakar. Pedal gas sebenarnya mengendalikan katup dalam karburator untuk menentukan besarnya aliran udara yang dapat masuk kedalam ruang bakar. Udara bergerak dalam karburator inilah yang memiliki tekanan untuk menarik serta bahan bakar masuk kedalam ruang bakar.
Kebanyakan mesin berkarburator hanya memiliki satu buah karburator, namun ada pula yang menggunakan satu karburator untuk tiap silinder yang dimiliki. Bahkan sempat menjadi trend modifikasi sepeda motor di Indonesia penggunaan multi-carbu (banyak karburator) namun biasanya hal ini hanya digunakan sebagai hiasan saja tanpa ada fungsi teknisnya. Mesin-mesin generasi awal menggunakan karburator aliran keatas (updraft), dimana udara masuk melalui bagian bawah karburator lalu keluar melalui bagian atas. Keuntungan desain ini adalah dapat menghindari terjadinya mesin banjir, karena kelebihan bahan bakar cair akan langsung tumpah keluar karburator dan tidak sampai masuk kedalam intake mainfold; keuntungan lainnya adalah bagian bawah karburator dapat disambungkan dengan saluran oli supaya ada sedikit oli yang ikut kedalam aliran udara dan digunakan untuk membasuh filter udara; namun dengan menggunakan filter udara berbahan kertas pembasuhan menggunakan oli ini sudah tidak diperlukan lagi sekarang ini.
Mulai akhir 1930-an, karburator aliran kebawah (downdraft) dan aliran kesamping (sidedraft) mulai popouler digunakan untuk otomotif.

Operasional

Pada setiap saat beroperasinya, karburator harus mampu:
  • Mengatur besarnya aliran udara yang masuk kedalam ruang bakar
  • Menyalurkan bahan bakar dengan jumlah yang tepat sesuai dengan aliran udara yang masuk kedalam ruang bakar sehingga rasio bahan bakar/udara tetap terjaga.
  • Mencampur airan udara dan bahan bakar dengan rata dan sempurna
Hal diatas bakal mudah dilakukan jika saja bensin dan udara adalah fluida ideal; tapi kenyataannya, dengan sifat alami mereka, yaitu adanya viskositas, gaya gesek fluida, inersia fluida, dan sebagainya karbrator menjadi sangat kompleks dalam mengatasi keadaan tidak ideal ini. Juga karburator harus tetap mampu memproduksi campuran bensin/udara yang tepat dalam kondisi apapun, karena karburator harus beroperasi dalam temperatur, tekanan udara, putaran mesin, dan gaya sentrifugal yang sangat beragam. Karburator harus mampu beroperasi dalam keadaan:
  • Start mesin dalam keadaan dingin
  • Start dalam keadaan panas
  • Langsam atau berjalan pada putaran rendah
  • Akselarasi ketika tiba-tiba membuka gas
  • Kecepatan tinggi dengan gas terbuka penuh
  • Kecepatan stabil dengan gas sebagian terbuka dalam jangka waktu yang lama
Karburator modern juga harus mampu menekan jumlah emisi kendaraan

Dasar

Skema potongan melintang sebuah karburator tipe aliran turun venturi tetap single barel
Karburator pada dasarnya merupakan pipa terbuka dikedua ujungnya, dalam pipa ini udara bergerak menuju intake mainfold menuju kedalam mesin/ruang bakar. Pipa ini berbentuk venturi, yaitu dari satu ujung permukaannya lebar lalu menyempit dibagian tengah kemudian melebar lagi di ujung satunya. Bentuk ini menyebabkan kecepatan aliran udara meningkat ketika melewati bagian yang sempit.
Pada tipe venturi tetap, diujung karburator dilengkapi dengan katup udara berbentuk kupu-kupu yang disebut sebagai throttle valve (katup gas), yaitu semacam cakram yang dapat berputar untuk menutup dan membuka pergerakan aliran udara sehingga dapat mengatur banyaknya campuran udara/bahan bakar yang masuk dalam ruang bakar. Banyaknya campuran udara/bahan bakar inilah yang menentukan besar tenaga dan/atau kecepatan gerak mesin. Pedal gas, atau pada sepeda motor, grip gas dihubungkan langsung dengan katup ini melalui kabel. Namun pada tipe venturi bergerak, keberadaan katup ini tidak ditemukan karena yang mengatur besarnya aliran udara/bahan bakar adalah ukuran venturi itu sendiri yang dapat berubah-ubah. Pedal atau grip gas dihubungkan dengan piston yang mengatur celah sempit dalam venturi
Bahan bakar disemburkan kepada aliran udara melalui saluran-saluran kecil yang terdapat dalam ruang sempit dalam venturi. Tekanan rendah dari udara yang bergerak dalam venturi menarik bahan bakar dari mangkuk karburator sehingga bahan bakar ini tersembur dan ikut aliran udara. Saluran-saluran ini disebut jet.

Read More ->>

Pompa bahan bakar

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Pompa bahan bakar atau dikenal juga dengan nama Fuel Pump adalah salah satu komponen dalam sistem bahan bakar pada sebuah kendaraan atau mesin pembakaran dalam lainnya. Sebagian mesin tidak memerlukan pompa bahan bakar karena dari desainnya dan dengan gravitasi, bahan bakar akan mengalir dengan sendirinya dalam sistem bahan bakarnya. Sebagian yang lainnya harus menggunakan pompa untuk mengalirkan bahan bakar dari tangki bahan bakar. Pada mesin dengan menggunakan karburator, umumnya menggunakan pompa mekanis bertekanan rendah yang terpasang di luar tangki bahan bakar, sedangkan mesin dengan injeksi bahan bakar, sebagian memiliki 2 macam pompa dalam sistem penyaluran bahan bakarnya,
  1. Pompa bahan bakar tekanan sedang/volume besar di tangki atau lebih dikenal dengan nama Fuel Pump. Pompa ini berfungsi untuk menyuplai kebutuhan dalam sistem injeksi bahan bakar. Umumnya pompa elektris yang terpasang dalam tangki bahan bakar.
  2. Pompa tekanan tinggi/volume rendah atau lebih dikenal dengan nama Fuel Injection Pump (FIP). Pompa ini ada dalam sistem injeksi bahan bahan bakar berfungsi untuk memompa bahan bakar dalam tekanan tinggi untuk suplai ke injektor.
Sebagian mesin dengan injeksi bahan bakar tidak memiliki pompa bahan bakar. Sistem injeksi bahan bakar menyedot bahan bakar langsung dari tangki atau FIP memompa bahan bakar dari tangki menuju injektor.
Pompa bahan bakar memiliki dua jenis :
  1. Pompa bahan bakar mekanis.
  2. Pompa bahan bakar elektris.

Daftar isi

Pompa bahan bakar mekanis

Pompa bahan bakar mekanis

Desain

Sebagian besar pompa jenis ini adalah tipe pompa membran. Pompa membran memiliki ruang pompa yang volumenya tergantung dari elastisitas pergerakan membran. Selain itu, dilengkapi dengan katup satu arah pada saluran masuk dan saluran keluar. Desain spesifik sangat bervariasi, umumnya pompa ini terpasang pada blok mesin atau kepala silinder. Sebuah poros yang memiliki poros eksentrik serta terhubung dengan putaran mesin akan menggerakan tuas pada pompa ini (langsung atau melalui poros penekan/penghubung) untuk menggerakan membran dengan gerakan naik turun. Pergerakan ini akan membuat volume ruang pompa akan mengecil atau membesar, dan berulang-ulang sesuai dengan putaran mesin. Saat volume ruang pompa mengecil, tekanan ruang pompa akan naik dan mengakibatkan katup satu arah pada saluran keluar terbuka serta katup satu arah pada saluran masuk tertutup, bahan bakan akan terpompa keluar melalui saluran keluar. Saat volume ruang pompa berubah dari terkecil mejadi membesar, tekanan pompa akan menurun dan mengakibatkan katup satu arah pada saluran keluar tertutup serta katup satu arah pada saluran masuk terbuka, bahan bajar akan terhisap masuk ruang pompa melalui saluran masuk. Saat proses ini terjadi secara terus menerus, bahan bakar akan mengalir dari tangki menuju karburator atau sistem injeksi bahan bakar. Pompa bahan bakar mekanis umumnya menghasilkan tekanan tidak lebih dari 15 psi, dikualifikasikan sebagai pompa tekanan rendah.

Aplikasi

Sebagian besar mesin bensin dengan karburator dan sebagian kecil mesin diesel menggunakan pompa bahan bakar mekanis.

Pompa bahan bakar elektris

Pompa bahan bakar elektris
Pompa bahan bakar elektris umumnya terpasang pada tangki bahan bakar, sebagian kecil pompa terpasang dalam ruang mesin. Tergantung dari desain, pompa tipe ini menghasilkan tekanan yang bervariasi, dari pompa bertekanan rendah sampai cukup tinggi. Sebagian dilengkapi dengan sensor untuk mendeteksi beban (suplai) berlebih, yang akan mematikan kerja pompa karena umumnya tidak ada saluran untuk aliran balik ke tangki bahan bakar.

Aplikasi

Kendaraan modern terutama yang sudah menggunakan sistem injeksi bahan bakar, umumnya menggunakan pompa bahan bakar elektris karena :
  • Lebih mudah disinergikan dengan sistem yang lain, misal dengan unit kontrol elektronik.
  • Pompa injeksi akan bekerja lebih efektif apabila bahan bakar yang masuk pompa injeksi dalam keadaan bertekanan cukup.

Read More ->>

Mesin pembakaran dalam


Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Mesin pembakaran dalam adalah sebuah mesin yang sumber tenaganya berasal dari pengembangan gas-gas panas bertekanan tinggi hasil pembakaran campuran bahan bakar dan udara, yang berlangsung di dalam ruang tertutup dalam mesin, yang disebut ruang bakar (combustion chamber).
"Mesin pembakaran dalam" sendiri biasanya merujuk kepada mesin yang pembakarannya dilakukan secara berselang-seling. Yang termasuk dalam mesin pembakaran dalam adalah mesin empat tak dan mesin dua tak, dan beberapa tipe mesin lainnya, misalnya mesin enam tak dan juga mesin wankel. Selain itu, mesin jet dan beberapa mesin roket termasuk dalam mesin pembakaran dalam.
Animasi dari cara kerja mesin 2 tak
Mesin pembakaran dalam agak berbeda dengan mesin pembakaran luar (contohnya mesin uap dan mesin Stirling), karena pada mesin pembakaran luar, energinya tidak disalurkan ke fluida kerja yang tidak bercampur dengan hasil pembakaran. Fluida kerja ini dapat berupa udara, air panas, air bertekanan, atau cairan natrium yang dipanaskan di semacam boiler.
Sebuah mesin piston bekerja dengan membakar bahan bakar hidrokarbon atau hidrogen untuk menekan sebuah piston, sedangkan sebuah mesin jet bekerja dengan panas pembakaran yang mendorong bagian dalam nozzle dan ruang pembakaran, sehingga mendorong mesin ke depan.
Secara kontras, sebuah mesin pembakaran luar seperti mesin uap, bekerja ketika proses pembakaran memanaskan fluida yang bekerja terpisah, seperti air atau uap, yang kemudian melakukan kerja.
Mesin jet, kebanyakan roket dan banyak turbin gas termasuk dalam mesin pembakaran dalam, tetapi istilah "mesin pembakaran dalam" seringkali menuju ke "mesin piston", yang merupakan tipe paling umum mesin pembakaran dalam.
Mesin pembakaran dalam ditemukan di Cina, dengan penemuan kembang api pada Dinasti Song. Mesin pembakaran dalam resiprokat (mesin piston) ditemukan oleh Samuel Morey yang menerima paten pada 1 April.

Daftar isi

Tipe-tipe mesin pembakaran dalam

Mesin dapat diklasifikasikan dalam banyak macam: siklus mesin yang digunakan, layout yang dipakai, sumber enerfi, penggunaan mesin, atau dari sistem pendinginnya.

Konfigurasi mesin

Mesin pembakaran dalam dapat dikelompokkan berdasarkan konfigurasinya.
Layout mesin yang umum adalah:
Mesin piston:
Mesin rotari:
Pembakaran terus-menerus:

Cara kerja

Siklus empat-tak (atau siklus Otto)
1. Masukan
2. Kompresi
3. Pembakaran
4. Pembuangan
Seperti namanya, mesin pembakaran dalam 4 tak mempunyai 4 tahap dasar yang terus diulangi setiap 2 putaran mesin:
(1) Siklus masukan (2) Siklus kompresi (3) Siklus pembakaran (4) Sillus pembuangan
1. Siklus masukan: Siklus yang pertama dari mesin pembakaran dalam disebut dengan siklus masukan karena pada saat ini, posisi piston berpindah ke bawah silinder. Membukanya klep menyebabkan perubahan posisi piston, dan campuran bahan bakar yang sudah diuapkan memasuki ruang bakar. Di akhir siklus ini, klep masukan tertutup.
2. Siklus kompresi: Di siklus ini, kedua klep tertutup dan pistonnya kembali bergerak ke atas ke volume minimum, sehingga menekan campuran bahan bakar. Selagi proses penekanan, tekanan, suhu, dan kepadatan campuran bahan bakar meningkat.
3. Siklus pembakaran: Ketika pistonnya mencapai volume minimum, lalu busi akan memantikkan api lalu campuran bahan bakar pun terbakar. Terbakarnya bahan bakar ini memberikan tenaga pada piston sehingga piston kembali bergerak ke bawah dan menggerakkan crankshaft.
4. Siklus pembuangan: Di akhir siklus pembakaran, maka klep buang pun membuka. Selama siklus ini, pistonnya kembali bergerak ke atas menuju volume silinder minimum. Ketika klep buangan membuka, maka gas sisa pembakaran keluar dari silinder. Di akhir siklus ini, klep buangan menutup, klep masukan kembali membuka, dan siklus ini dimulai dari awal lagi.

Pembakaran

Semua mesin pembakaran dalam bergantung pada pembakaran dari bahan bakar kimia, yang biasanya dibakar dengan campuran oksigen dari udara (memungkinkan juga untuk menginjeksikan nitrogen oksida, yang gunanya untuk mendapatkan tenaga tambahan). Proses pembakaran ini menghasilkan panas dalam jumlah besar, ditambah dengan bahan kimia lain misalnya karbon dioksida.
Bahan bakar yang paling umum digunakan saat ini tersusun dari hidrokarbon yang berasal dari bahan bakar fosil. Bahan bakar fosil mencakup bahan bakar diesel, bensin, LPG, dan juga propana. Mesin yang bahan bakarnya menggunakan bensin, mereka juga dapat menggunakan bahan bakar natural gas atau LPG tanpa perlu banyak perubahan.

Pranala luar


Read More ->>

Teknik otomotif

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
http://gambar.otomotifnet.com/Kanal%20MOBIL/Umum/2012/06.%20Juni/McLaren.jpgTeknik otomotif adalah salah satu cabang ilmu teknik mesin yang mempelajari tentang bagaimana merancang, membuat dan mengembangkan alat-alat transportasi darat yang menggunakan mesin, terutama sepeda motor, mobil, bis dan truk. Teknik otomotif menggabungkan elemen-elemen pengetahuan mekanika, listrik, elektronik, keselamatan dan lingkungan serta matematika, fisika, kimia, biologi dan manajemen.
Cabang-cabang dari teknik otomotif meliputi :
  • Perencanaan (product atau design)
  • Pengembangan (development)
  • Produksi (manufacturing)
  • Perawatan (maintenance)
Di Indonesia saat ini cabang yang sangat berkembang adalah perawatan dan umumnya mengenai perawatan mobil dan sepeda motor.
Read More ->>
Diberdayakan oleh Blogger.

jam

jam